Seaborn To Visualize Iris Data

In [ ]:
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in 

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory

import os
print(os.listdir("../input"))

# Any results you write to the current directory are saved as output.

Importing pandas and Seaborn module

In [ ]:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')  
import warnings
warnings.filterwarnings('ignore')  #this will ignore the warnings.it wont display warnings in notebook

Importing Iris data set

In [ ]:
iris=pd.read_csv('../input/Iris.csv')

Displaying data

In [ ]:
iris.head()
In [ ]:
iris.drop('Id',axis=1,inplace=True)

Checking if there are any missing values

In [ ]:
iris.info()
In [ ]:
iris['Species'].value_counts()

This data set has three varities of Iris plant.

1. Describing the data

In [ ]:
iris.describe().plot(kind = "area",fontsize=27, figsize = (20,8), table = True,colormap="rainbow")
plt.xlabel('Statistics',)
plt.ylabel('Value')
plt.title("General Statistics of Iris Dataset")

Above plot gives us a General Idea about the dataset.

2.Bar Plot : Here the frequency of the observation is plotted.In this case we are plotting the frequency of the three species in the Iris Dataset

In [ ]:
#f,ax=plt.subplots(1,2,figsize=(18,8))
sns.countplot('Species',data=iris)
#ax.set_title('Iris Species Count')
plt.show()

3. Pie Chart :

In [ ]:
#f,ax=plt.subplots(1,2,figsize=(18,8))
iris['Species'].value_counts().plot.pie(explode=[0.1,0.1,0.1],autopct='%1.1f%%',shadow=True,figsize=(10,8))
#iris['Species'].value_counts().plot.pie(explode=[0.1,0.1,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True)
#ax[0].set_title('Iris Species Count')
#ax[0].set_ylabel('Count')
#sns.countplot('Species',data=iris,ax=ax[1])
#ax[1].set_title('Iris Species Count')
plt.show()

We can see that there are 50 samples each of all the Iris Species in the data set.

4. Joint plot: Jointplot is seaborn library specific and can be used to quickly visualize and analyze the relationship between two variables and describe their individual distributions on the same plot.

In [ ]:
fig=sns.jointplot(x='SepalLengthCm',y='SepalWidthCm',data=iris)
In [ ]:
sns.jointplot("SepalLengthCm", "SepalWidthCm", data=iris, kind="reg")
In [ ]:
fig=sns.jointplot(x='SepalLengthCm',y='SepalWidthCm',kind='hex',data=iris)
In [ ]:
sns.jointplot("SepalLengthCm", "SepalWidthCm", data=iris, kind="kde",space=0,color='g')
In [ ]:
g = (sns.jointplot("SepalLengthCm", "SepalWidthCm",data=iris, color="k").plot_joint(sns.kdeplot, zorder=0, n_levels=6))

5. FacetGrid Plot

In [ ]:
import matplotlib.pyplot as plt
%matplotlib inline
sns.FacetGrid(iris,hue='Species',size=5)
.map(plt.scatter,'SepalLengthCm','SepalWidthCm')
.add_legend()

6. Boxplot or Whisker plot Box plot was was first introduced in year 1969 by Mathematician John Tukey.Box plot give a statical summary of the features being plotted.Top line represent the max value,top edge of box is third Quartile, middle edge represents the median,bottom edge represents the first quartile value.The bottom most line respresent the minimum value of the feature.The height of the box is called as Interquartile range.The black dots on the plot represent the outlier values in the data.

In [ ]:
fig=plt.gcf()
fig.set_size_inches(10,7)
fig=sns.boxplot(x='Species',y='PetalLengthCm',data=iris,order=['Iris-virginica','Iris-versicolor','Iris-setosa'],linewidth=2.5,orient='v',dodge=False)
In [ ]:
#iris.drop("Id", axis=1).boxplot(by="Species", figsize=(12, 6))
iris.boxplot(by="Species", figsize=(12, 6))

7. Strip plot

In [ ]:
fig=plt.gcf()
fig.set_size_inches(10,7)
fig=sns.stripplot(x='Species',y='SepalLengthCm',data=iris,jitter=True,edgecolor='gray',size=8,palette='winter',orient='v')

8. Combining Box and Strip Plots

In [ ]:
fig=plt.gcf()
fig.set_size_inches(10,7)
fig=sns.boxplot(x='Species',y='SepalLengthCm',data=iris)
fig=sns.stripplot(x='Species',y='SepalLengthCm',data=iris,jitter=True,edgecolor='gray')
In [ ]:
ax= sns.boxplot(x="Species", y="PetalLengthCm", data=iris)
ax= sns.stripplot(x="Species", y="PetalLengthCm", data=iris, jitter=True, edgecolor="gray")

boxtwo = ax.artists[2]
boxtwo.set_facecolor('yellow')
boxtwo.set_edgecolor('black')
boxthree=ax.artists[1]
boxthree.set_facecolor('red')
boxthree.set_edgecolor('black')
boxthree=ax.artists[0]
boxthree.set_facecolor('green')
boxthree.set_edgecolor('black')

plt.show()

9. Violin Plot It is used to visualize the distribution of data and its probability distribution.This chart is a combination of a Box Plot and a Density Plot that is rotated and placed on each side, to show the distribution shape of the data. The thick black bar in the centre represents the interquartile range, the thin black line extended from it represents the 95% confidence intervals, and the white dot is the median.Box Plots are limited in their display of the data, as their visual simplicity tends to hide significant details about how values in the data are distributed

In [ ]:
fig=plt.gcf()
fig.set_size_inches(10,7)
fig=sns.violinplot(x='Species',y='SepalLengthCm',data=iris)
In [ ]:
plt.figure(figsize=(15,10))
plt.subplot(2,2,1)
sns.violinplot(x='Species',y='PetalLengthCm',data=iris)
plt.subplot(2,2,2)
sns.violinplot(x='Species',y='PetalWidthCm',data=iris)
plt.subplot(2,2,3)
sns.violinplot(x='Species',y='SepalLengthCm',data=iris)
plt.subplot(2,2,4)
sns.violinplot(x='Species',y='SepalWidthCm',data=iris)

10. Pair Plot: A “pairs plot” is also known as a scatterplot, in which one variable in the same data row is matched with another variable's value, like this: Pairs plots are just elaborations on this, showing all variables paired with all the other variables.

In [ ]:
sns.pairplot(data=iris,kind='scatter')
In [ ]:
sns.pairplot(iris,hue='Species')

11. Heat map Heat map is used to find out the correlation between different features in the dataset.High positive or negative value shows that the features have high correlation.This helps us to select the parmeters for machine learning.

In [ ]:
fig=plt.gcf()
fig.set_size_inches(10,7)
fig=sns.heatmap(iris.corr(),annot=True,cmap='cubehelix',linewidths=1,linecolor='k',square=True,mask=False, vmin=-1, vmax=1,cbar_kws={"orientation": "vertical"},cbar=True)

12. Distribution plot: The distribution plot is suitable for comparing range and distribution for groups of numerical data. Data is plotted as value points along an axis. You can choose to display only the value points to see the distribution of values, a bounding box to see the range of values, or a combination of both as shown here.The distribution plot is not relevant for detailed analysis of the data as it deals with a summary of the data distribution.

In [ ]:
iris.hist(edgecolor='black', linewidth=1.2)
fig=plt.gcf()
fig.set_size_inches(12,6)

13. Swarm plot It looks a bit like a friendly swarm of bees buzzing about their hive. More importantly, each data point is clearly visible and no data are obscured by overplotting.A beeswarm plot improves upon the random jittering approach to move data points the minimum distance away from one another to avoid overlays. The result is a plot where you can see each distinct data point, like shown in below plot

In [ ]:
sns.set(style="darkgrid")
fig=plt.gcf()
fig.set_size_inches(10,7)
fig = sns.swarmplot(x="Species", y="PetalLengthCm", data=iris)

14. Box and Swarm plot combined

In [ ]:
sns.set(style="darkgrid")
fig=plt.gcf()
fig.set_size_inches(10,7)
fig= sns.boxplot(x="Species", y="PetalLengthCm", data=iris, whis=np.inf)
fig= sns.swarmplot(x="Species", y="PetalLengthCm", data=iris, color=".2")

15. Swarm and Violin plot combined

In [ ]:
sns.set(style="whitegrid")
fig=plt.gcf()
fig.set_size_inches(10,7)
ax = sns.violinplot(x="Species", y="PetalLengthCm", data=iris, inner=None)
ax = sns.swarmplot(x="Species", y="PetalLengthCm", data=iris,color="white", edgecolor="black")

16. Species based classification

In [ ]:
sns.set(style="darkgrid")
sc=iris[iris.Species=='Iris-setosa'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',color='red',label='Setosa')
iris[iris.Species=='Iris-versicolor'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',color='green',label='Versicolor',ax=sc)
iris[iris.Species=='Iris-virginica'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',color='orange', label='virginica', ax=sc)
sc.set_xlabel('Sepal Length in cm')
sc.set_ylabel('Sepal Width in cm')
sc.set_title('Sepal Length Vs Sepal Width')
sc=plt.gcf()
sc.set_size_inches(10,6)

17. LM PLot

In [ ]:
fig=sns.lmplot(x="PetalLengthCm", y="PetalWidthCm",data=iris)

18. FacetGrid

In [ ]:
sns.FacetGrid(iris, hue="Species", size=6) 
   .map(sns.kdeplot, "PetalLengthCm") 
   .add_legend()
plt.ioff() 

19. Andrews Curve: In data visualization, an Andrews plot or Andrews curve is a way to visualize structure in high-dimensional data. It is basically a rolled-down, non-integer version of the Kent–Kiviat radar m chart, or a smoothened version of a parallel coordinate plot.In Pandas use Andrews Curves to plot and visualize data structure.Each multivariate observation is transformed into a curve and represents the coefficients of a Fourier series.This useful for detecting outliers in times series data.Use colormap to change the color of the curves

In [ ]:
from pandas.tools.plotting import andrews_curves
andrews_curves(iris,"Species",colormap='rainbow')
plt.show()
plt.ioff()

20. Parallel coordinate plot: This type of visualisation is used for plotting multivariate, numerical data. Parallel Coordinates Plots are ideal for comparing many variables together and seeing the relationships between them. For example, if you had to compare an array of products with the same attributes (comparing computer or cars specs across different models).

In [ ]:
from pandas.tools.plotting import parallel_coordinates
parallel_coordinates(iris, "Species")

21. Radviz Plot RadViz Visualizer. RadViz is a multivariate data visualization algorithm that plots each feature dimension uniformly around the circumference of a circle then plots points on the interior of the circle such that the point normalizes its values on the axes from the center to each arc.

In [ ]:
from pandas.tools.plotting import radviz
radviz(iris, "Species")

22. Factor Plot

In [ ]:
#f,ax=plt.subplots(1,2,figsize=(18,8))
sns.factorplot('Species','SepalLengthCm',data=iris)
plt.ioff()
plt.show()
#sns.factorplot('Species','SepalLengthCm',data=iris,ax=ax[0][0])
#sns.factorplot('Species','SepalWidthCm',data=iris,ax=ax[0][1])
#sns.factorplot('Species','PetalLengthCm',data=iris,ax=ax[1][0])
#sns.factorplot('Species','PetalWidthCm',data=iris,ax=ax[1][1])

23. Boxen Plot|

In [ ]:
fig=plt.gcf()
fig.set_size_inches(10,7)
fig=sns.boxenplot(x='Species',y='SepalLengthCm',data=iris)

24.Residual Plot : The most useful way to plot the residuals, though, is with your predicted values on the x-axis, and your residuals on the y-axis. The distance from the line at 0 is how bad the prediction was for that value.

In [ ]:
fig=plt.gcf()
fig.set_size_inches(10,7)
fig=sns.residplot('SepalLengthCm', 'SepalWidthCm',data=iris,lowess=True)

25.Venn Diagram : A Venn diagram (also called primary diagram, set diagram or logic diagram) is a diagram that shows all possible logical relations between a finite collection of different sets. Each set is represented by a circle. The circle size represents the importance of the group. The groups are usually overlapping: the size of the overlap represents the intersection between both groups.

In [ ]:
# venn2
from matplotlib_venn import venn2
sepal_length = iris.iloc[:,0]
sepal_width = iris.iloc[:,1]
petal_length = iris.iloc[:,2]
petal_width = iris.iloc[:,3]
# First way to call the 2 group Venn diagram
venn2(subsets = (len(sepal_length)-15, len(sepal_width)-15, 15), set_labels = ('sepal_length', 'sepal_width'))
plt.show()

26. Spider Graph

In [ ]:
from math import pi
categories = list(iris)[:4]
N = len(categories)
angles = [ n / float(N)*2*pi for n in range(N)]
angles = angles + angles[:1]
plt.figure(figsize = (10,10))
ax = plt.subplot(111,polar = True)
ax.set_theta_offset(pi/2)
ax.set_theta_direction(-1)
plt.xticks(angles[:-1],categories)
ax.set_rlabel_position(0)
plt.yticks([0,2,4,6],["0","2","4","6"],color= "red", size = 7)
plt.ylim(0,6)

values = iris.loc[0].drop("Species").values.flatten().tolist()
values = values + values[:1]
ax.plot(angles,values,linewidth = 1,linestyle="solid",label ="setosa" )
ax.fill(angles,values,"b",alpha=0.1)

values = iris.loc[1].drop("Species").values.flatten().tolist()
values = values + values[:1]
ax.plot(angles,values,linewidth = 1,linestyle="solid",label ="versicolor" )
ax.fill(angles,values,"orange",alpha=0.1)
plt.legend(loc = "upper left",bbox_to_anchor = (0.1,0.1))
plt.show()

27.Donut plot

In [ ]:
# donut plot
feature_names = "sepal_length","sepal_width","petal_length","petal_width"
feature_size = [len(sepal_length),len(sepal_width),len(petal_length),len(petal_width)]
# create a circle for the center of plot
circle = plt.Circle((0,0),0.2,color = "white")
plt.pie(feature_size, labels = feature_names, colors = ["red","green","blue","cyan"] )
p = plt.gcf()
p.gca().add_artist(circle)
plt.title("Number of Each Features")
plt.show()

28.KDE Plot

In [ ]:
# Create a kde plot of sepal_length versus sepal width for setosa species of flower.
sub=iris[iris['Species']=='Iris-setosa']
sns.kdeplot(data=sub[['SepalLengthCm','SepalWidthCm']],cmap="plasma", shade=True, shade_lowest=False)
plt.title('Iris-setosa')
plt.xlabel('Sepal Length Cm')
plt.ylabel('Sepal Width Cm')

Seaborn Pairplot With Iris Dataset

In [ ]:
import seaborn as sns
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="ticks", color_codes=True)
iris=pd.read_csv('../input/Iris.csv')
iris.drop('Id',axis=1,inplace=True)
print(iris.head())
#sns.pairplot(iris)
sns.pairplot(iris, hue="Species", palette="husl", markers=["o", "s", "D"])
In [ ]:
 

Seaborn Joint Plot With Tips Dataset

In [ ]:
import seaborn as sns
import pandas as pd
sns.set(style="darkgrid")
tips = pd.read_csv('../input/tips.csv')
print(tips.head())
#sns.load_dataset("tips")
g = sns.jointplot("total_bill", "tip", data=tips, kind="reg",
                  xlim=(0, 60), ylim=(0, 12), color="m", height=7)
In [ ]:
 

Pairplots In Python

Pairplots in Python

In this notebook we will explore making pairplots in Python using the seaborn visualization library. We'll start with the default sns.pairplot and then look at customizing our plots using sns.PairGrids.

In [ ]:
# Pandas and numpy for data manipulation
import pandas as pd
import numpy as np
In [ ]:
# matplotlib for plotting
import matplotlib.pyplot as plt
import matplotlib

# Set text size
matplotlib.rcParams['font.size'] = 18

# Seaborn for pairplots
import seaborn as sns

sns.set_context('talk', font_scale=1.2);

Gapminder Socioeconomic Data

We will be using GapMinder socioeconomic data that is available in the R package gapminder. The data has been saved to a csv file which we will read into a dataframe. There are six columns in the data:

  1. Country
  2. Continent: useful for grouping data
  3. Year: data coveres 1952-2007
  4. life_exp: the life expectancy at birth
  5. pop: population
  6. gdp_per_cap: the per capita (per person) GDP in international dollars
In [ ]:
df = pd.read_csv('../input/gapminder-data/gapminder_data.csv')
df.columns = ['country', 'continent', 'year', 'life_exp', 'pop', 'gdp_per_cap']
df.head()

We can quickly find summary stats for the data using the describe method of a dataframe.

In [ ]:
df.describe()

Default Pair Plot with All Data

Let's use the entire dataset and sns.pairplot to create a simple, yet useful plot.

In [ ]:
sns.pairplot(df);

The default pairplot shows scatter plots between variables on the upper and lower triangle and histograms along the diagonal. Already, we can see some trends such as a positive correlation between gdp_per_cap and life_exp and year and life_exp which suggests that people in richer countries live longer and that in general, people have been living longer as time increases. We can't say what causes theses trends, only that there is a correlation.

We can also see that the distribution of pop and gdp_per_cap is heavily skewed to the right. To better represent the data, we can take the log transform of those columns.

In [ ]:
df['log_pop'] = np.log10(df['pop'])
df['log_gdp_per_cap'] = np.log10(df['gdp_per_cap'])

df = df.drop(columns = ['pop', 'gdp_per_cap'])

Group and Color by a Variable

In order to better understand the data, we can color the pairplot using a categorical variable and the hue keyword. First, we will color the plots by the continent.

In [ ]:
matplotlib.rcParams['font.size'] = 40
sns.pairplot(df, hue = 'continent');

I don't find stacked histograms (on the diagonal) to be very useful, and there are some issues with overlapping data points (known as overplotting). We can fix these by adding in a few customizations to the pairplot call.

Customizing pairplot

First, let's change the diagonal from a histogram to a kde which can better show the differences between continents. We can also adjust the alpha (intensity) of the scatter plots to better show all the data and change the size of the markers on the scatter plot. Finally, I increase the size of all the plots to better show the data.

In [ ]:
sns.pairplot(df, hue = 'continent', diag_kind = 'kde', plot_kws = {'alpha': 0.6, 's': 80, 'edgecolor': 'k'}, size = 4);

That makes some of the trends more clear. We can see that Oceania and Europe tend to have the highest life expectancy and highest GDP with Asian countries tending to have the greatest population. The density plots on the diagonal are better for when we have data in multiple categories to make comparisons. We can color the plot by any variable we like. For example, here is a plot colored by a decade categorical variable we create from the year column.

In [ ]:
df['decade'] = pd.cut(df['year'], bins = range(1950, 2010, 10))
df.head()
In [ ]:
sns.pairplot(df, hue = 'decade', diag_kind = 'kde', vars = ['life_exp', 'log_pop', 'log_gdp_per_cap'],
             plot_kws = {'alpha': 0.6, 's': 80, 'edgecolor': 'k'}, size = 4);

In this case, we can know see that life expectancy has increased over the decades as has population. Retaining the year variable might not make much sense when we are already coloring by the decade.

There is still quite a lot of noise on the scatter plots, mostly because we are plotting many years at once. Let's limit ourselves to the most recent year in the data. Notice how we must now use the vars keyword to specify the variables we want to plot. It does not make sense to plot the year variable since it no longer varies. We will limit the plot to the three remaining numerical variables.

In [ ]:
sns.pairplot(df[df['year'] >= 2000], vars = ['life_exp', 'log_pop', 'log_gdp_per_cap'], 
             hue = 'continent', diag_kind = 'kde', plot_kws = {'alpha': 0.6, 's': 80, 'edgecolor': 'k'}, size = 4);
plt.suptitle('Pair Plot of Socioeconomic Data for 2000-2007', size = 28);

More Customization with sns.PairGrid

When the options offered by pairplot are not enough, we can move on to more powerful PairGrid. This allows us to define our own functions to map to the lower and upper triangles and the diagonal. For example, we might want a plot that instead of showing two instaces of the scatter plots, shows the Pearson Correlation coefficient (a measure of a linear trend) on one of the triangles. To do this, we can just write a function to calculate the statistic and then map it to the appropriate part of the plot.

First, we will show the basic usage of sns.PairGrid. Here, we map a scatter plot to the upper triangle, a density plot to the diagonal, and a 2D density plot to the lower triangle. PairGrid is a class and not a function, which means that we need to create an instance and then use methods of that instance to build a plot. Then, after we have added all the methods to the instance, we can show the resulting plot.

In [ ]:
# Create an instance of the PairGrid class.
grid = sns.PairGrid(data= df[df['year'] == 2007],
                    vars = ['life_exp', 'log_pop', 'log_gdp_per_cap'], size = 4)

# Map different plots to different sections
grid = grid.map_upper(plt.scatter, color = 'darkred')
grid = grid.map_lower(sns.kdeplot, cmap = 'Reds')
grid = grid.map_diag(plt.hist, bins = 10, color = 'darkred', edgecolor = 'k');

Now that we see how to map different functions to the different elements, we can write out own function to put on the plot. We'll use a simple function to show the correlation coffiecients on the scatterplot. (Thanks to this Stack Overflow answer for help on how to write a custom function and map it onto the plot).

In [ ]:
# Function to calculate correlation coefficient between two arrays
def corr(x, y, **kwargs):
    
    # Calculate the value
    coef = np.corrcoef(x, y)[0][1]
    # Make the label
    label = r'$rho$ = ' + str(round(coef, 2))
    
    # Add the label to the plot
    ax = plt.gca()
    ax.annotate(label, xy = (0.2, 0.95), size = 20, xycoords = ax.transAxes)
    
# Create a pair grid instance
grid = sns.PairGrid(data= df[df['year'] == 2007],
                    vars = ['life_exp', 'log_pop', 'log_gdp_per_cap'], size = 4)

# Map the plots to the locations
grid = grid.map_upper(plt.scatter, color = 'darkred')
grid = grid.map_upper(corr)
grid = grid.map_lower(sns.kdeplot, cmap = 'Reds')
grid = grid.map_diag(plt.hist, bins = 10, edgecolor =  'k', color = 'darkred');

We can map any function we would like to any of the areas. For example, maybe we would like to show the summary stats on the diagonal.

In [ ]:
# Define a summary function
def summary(x, **kwargs):
    # Convert to a pandas series
    x = pd.Series(x)
    
    # Get stats for the series
    label = x.describe()[['mean', 'std', 'min', '50%', 'max']]
    
    # Convert from log to regular scale
    # Adjust the column names for presentation
    if label.name == 'log_pop':
        label = 10 ** label
        label.name = 'pop stats'
    elif label.name == 'log_gdp_per_cap':
        label = 10 ** label
        label.name = 'gdp_per_cap stats'
    else:
        label.name = 'life_exp stats'
       
    # Round the labels for presentation
    label = label.round()
    ax = plt.gca()
    ax.set_axis_off()
    print(label)
    # Add the labels to the plot
    #ax.annotate(pd.DataFrame(label),xy = (0.1, 0.2), size = 20, xycoords = ax.transAxes)    
    

# Create a pair grid instance
grid = sns.PairGrid(data= df[df['year'] == 2007],
                    vars = ['life_exp', 'log_pop', 'log_gdp_per_cap'], size = 4)

# Fill in the mappings
grid = grid.map_upper(plt.scatter, color = 'darkred')
grid = grid.map_upper(corr)
grid = grid.map_lower(sns.kdeplot, cmap = 'Reds')
grid = grid.map_diag(summary);

We can extend this however we like in order to investigate the data. For most use cases, the sns.pairplot function will do everything we require, but if we need the extra options, we can always use the more powerful sns.PairGrid. Pair plots are a great method to get a first look at a dataset, and seaborn has extensive capabilities for producing these figures!

Deep Learning With Keras

Coding the forward propagation algorithm

In [ ]:
import numpy as np





In [ ]:
weights = { 'node_0': np.array([2,4]),
            'node_1': np.array([4, -5]),
            'output': np.array([2,7])}

input_data = np.array([3,5])

# Calculate node 0 value: node_0_value
node_0_value = (weights['node_0'] * input_data).sum()

# Calculate node 1 value: node_1_value
node_1_value = (weights['node_1'] * input_data).sum()

# Put node values into array: hidden_layer_outputs
hidden_layer_outputs = np.array([node_0_value, node_1_value])

# Calculate output: output
output = (weights['output'] * hidden_layer_outputs).sum()

# Print output
print(output)

The Rectified Linear Activation Function

In [ ]:
def relu(input):
    '''Define your relu activation function here'''
    # Calculate the value for the output of the relu function: output
    output = max(input, 0)

    # Return the value just calculated
    return(output)

# Calculate node 0 value: node_0_output
node_0_input = (input_data * weights['node_0']).sum()
node_0_output = relu(node_0_input)

# Calculate node 1 value: node_1_output
node_1_input = (input_data * weights['node_1']).sum()
node_1_output = relu(node_1_input)

# Put node values into array: hidden_layer_outputs
hidden_layer_outputs = np.array([node_0_output, node_1_output])

# Calculate model output (do not apply relu)
model_output = (hidden_layer_outputs * weights['output']).sum()

# Print model output
print(model_output)
In [ ]:
relu(3)
In [ ]:
relu(-1)
In [ ]:
# Define predict_with_network()
def predict_with_network(input_data_row, weights):

    # Calculate node 0 value
    node_0_input = (input_data_row * weights['node_0']).sum()
    node_0_output = relu(node_0_input)

    # Calculate node 1 value
    node_1_input = (input_data_row * weights['node_1']).sum()
    node_1_output = relu(node_1_input)

    # Put node values into array: hidden_layer_outputs
    hidden_layer_outputs = np.array([node_0_output, node_1_output])
    
    # Calculate model output
    input_to_final_layer = (hidden_layer_outputs * weights['output']).sum()
    model_output = relu(input_to_final_layer)
    
    # Return model output
    return(model_output)
        
In [ ]:
weights = {'node_0': np.array([2, 4]), 'node_1': np.array([ 4, -5]), 'output': np.array([2, 7])}
input_data = [np.array([3, 5]), np.array([ 1, -1]), np.array([0, 0]), np.array([8, 4])]

# Create empty list to store prediction results
results = []
for input_data_row in input_data:
    # Append prediction to results
    results.append(predict_with_network(input_data_row, weights))

# Print results
print(results)

Multi-layer neural networks

In [ ]:
weights = {'node_0_0': np.array([2, 4]),
 'node_0_1': np.array([ 4, -5]),
 'node_1_0': np.array([-1,  2]),
 'node_1_1': np.array([1, 2]),
 'output': np.array([2, 7])}

input_data = np.array([3, 5])

def predict_with_network(input_data):
    # Calculate node 0 in the first hidden layer
    node_0_0_input = (input_data * weights['node_0_0']).sum()
    node_0_0_output = relu(node_0_0_input)

    # Calculate node 1 in the first hidden layer
    node_0_1_input = (input_data * weights['node_0_1']).sum()
    node_0_1_output = relu(node_0_1_input)

    # Put node values into array: hidden_0_outputs
    hidden_0_outputs = np.array([node_0_0_output, node_0_1_output])
    
    # Calculate node 0 in the second hidden layer
    node_1_0_input = (hidden_0_outputs * weights['node_1_0']).sum()
    node_1_0_output = relu(node_1_0_input)

    # Calculate node 1 in the second hidden layer
    node_1_1_input = (hidden_0_outputs * weights['node_1_1']).sum()
    node_1_1_output = relu(node_1_1_input)

    # Put node values into array: hidden_1_outputs
    hidden_1_outputs = np.array([node_1_0_output, node_1_1_output])

    # Calculate model output: model_output
    model_output = (hidden_1_outputs * weights['output']).sum()
    
    # Return model_output
    return(model_output)
In [ ]:
output = predict_with_network(input_data)
output

Q: Which layers of a model capture more complex or "higher level" interactions?

The last layers capture the most complex interactions.

Coding how weight changes affect accuracy

In [ ]:
def predict_with_network(input_data, weights):
    # Calculate node 0 in the first hidden layer
    node_0_0_input = (input_data * weights['node_0']).sum()
    node_0_0_output = relu(node_0_0_input)

    # Calculate node 1 in the first hidden layer
    node_0_1_input = (input_data * weights['node_1']).sum()
    node_0_1_output = relu(node_0_1_input)

    # Put node values into array: hidden_0_outputs
    hidden_0_outputs = np.array([node_0_0_output, node_0_1_output])

    # Calculate model output: model_output
    model_output = (hidden_0_outputs * weights['output']).sum()
    
    # Return model_output
    return(model_output)





In [ ]:
# The data point you will make a prediction for
input_data = np.array([0, 3])

# Sample weights
weights_0 = {'node_0': [2, 1],
             'node_1': [1, 2],
             'output': [1, 1]
            }

# The actual target value, used to calculate the error
target_actual = 3

# Make prediction using original weights
model_output_0 = predict_with_network(input_data, weights_0)

# Calculate error: error_0
error_0 = model_output_0 - target_actual

# Create weights that cause the network to make perfect prediction (3): weights_1
weights_1 = {'node_0': [2, 1],
             # changed node_1 weight as [1,0]
             'node_1': [1, 0],
             'output': [1,1]
            }

# Make prediction using new weights: model_output_1
model_output_1 = predict_with_network(input_data, weights_1)

# Calculate error: error_1
error_1 = model_output_1 - target_actual

# Print error_0 and error_1
print(error_0)
print(error_1)

Scaling up to multiple data points

In [ ]:
input_data = [np.array([0, 3]), np.array([1, 2]), np.array([-1, -2]), np.array([4, 0])]
target_actuals = [1, 3, 5, 7]

weights_0 ={'node_0': np.array([2, 1]), 'node_1': np.array([1, 2]), 'output': np.array([1, 1])}
weights_1 = {'node_0': np.array([2, 1]), 'node_1': np.array([1. , 1.5]), 'output': np.array([1. , 1.5])}
In [ ]:
from sklearn.metrics import mean_squared_error

# Create model_output_0 
model_output_0 = []
# Create model_output_0
model_output_1 = []

# Loop over input_data
for row in input_data:
    # Append prediction to model_output_0
    model_output_0.append(predict_with_network(row, weights_0))
    
    # Append prediction to model_output_1
    model_output_1.append(predict_with_network(row, weights_1))

# Calculate the mean squared error for model_output_0: mse_0
mse_0 = mean_squared_error(target_actuals, model_output_0)

# Calculate the mean squared error for model_output_1: mse_1
mse_1 = mean_squared_error(target_actuals, model_output_1)

# Print mse_0 and mse_1
print("Mean squared error with weights_0: %f" %mse_0)
print("Mean squared error with weights_1: %f" %mse_1)
In [ ]:
model_output_0
In [ ]:
model_output_1

Calculating slopes

When plotting the mean-squared error loss function against predictions, the slope is 2 * x * (y-xb), or 2 * input_data * error.

In [ ]:
input_data = np.array([1, 2, 3])
weights = np.array([0, 2, 1])
target = 0
In [ ]:
# Calculate the predictions: preds
preds = (weights * input_data).sum()

# Calculate the error: error
error = preds - target

# Calculate the slope: slope
slope = 2 * input_data * error

# Print the slope
print(slope)

You've just calculated the slopes you need. Now it's time to use those slopes to improve your model.

Improving model weights

In [ ]:
# Set the learning rate: learning_rate
learning_rate = 0.01

# Calculate the predictions: preds
preds = (weights * input_data).sum()

# Calculate the error: error
error = preds - target

# Calculate the slope: slope
slope = 2 * input_data * error

# Update the weights: weights_updated
weights_updated = weights - ( learning_rate * slope)

# Get updated predictions: preds_updated
preds_updated = (weights_updated * input_data).sum()

# Calculate updated error: error_updated
error_updated = preds_updated - target

# Print the original error
print(error)

# Print the updated error
print(error_updated)

Making multiple updates to weights

In [ ]:
import matplotlib.pyplot as plt
In [ ]:
input_data = np.array([1, 2, 3])
weights = np.array([-0.49929916,  1.00140168, -0.49789747])
target = 0
In [ ]:
def get_slope(input_data, target, weights):
    # Calculate the predictions: preds
    preds = (weights * input_data).sum()

    # Calculate the error: error
    error = preds - target

    # Calculate the slope: slope
    slope = 2 * input_data * error
    
    return slope
In [ ]:
def get_mse(input_data, target, weights_updated):

    # Get updated predictions: preds_updated
    preds_updated = (weights_updated * input_data).sum()

    # Calculate updated error: error_updated
    error_updated = preds_updated - target
    
    return error_updated
In [ ]:
n_updates = 20
mse_hist = []

# Iterate over the number of updates
for i in range(n_updates):
    
    # Calculate the slope: slope
    slope = get_slope(input_data, target, weights)
    
    # Update the weights: weights
    weights = weights - 0.01 * slope
    
    # Calculate mse with new weights: mse
    mse = get_mse(input_data, target, weights)
    
    # Append the mse to mse_hist
    mse_hist.append(mse)

# Plot the mse history
plt.plot(mse_hist)
plt.xlabel('Iterations')
plt.ylabel('Mean Squared Error')
plt.show()

Creating a keras model

In [ ]:
# Import necessary modules
import pandas as pd
import keras
from keras.layers import Dense
from keras.models import Sequential

# Save the number of columns in predictors: n_cols
df = pd.read_csv('../input/hourly-wages/hourly_wages.csv')
#print(df.head())
predictors = df.drop(columns=['wage_per_hour'], axis=1).values
target = df['wage_per_hour'].values
n_cols = predictors.shape[1]

# Set up the model: model
model = Sequential()

# Add the first layer
model.add(Dense(50, activation='relu', input_shape=(n_cols,)))

# Add the second layer
model.add(Dense(32, activation='relu'))

# Add the output layer
model.add(Dense(1))

Compiling and fitting a model

In [ ]:
# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')

# Verify that model contains information from compiling
print("Loss function: " + model.loss)
In [ ]:
# Fit the model
model.fit(predictors, target)
In [ ]:
# Import necessary modules
import pandas as pd
import keras
from keras.layers import Dense
from keras.models import Sequential
from keras.utils import to_categorical

df = pd.read_csv('../input/titanic/titanic_all_numeric.csv')
print(df.head())
predictors = df.drop(columns=['survived'], axis=1).values
#target = df['wage_per_hour'].values
n_cols = predictors.shape[1]

# Convert the target to categorical: target
target = to_categorical(df.survived)

# Set up the model
model = Sequential()

# Add the first layer
model.add(Dense(32, activation='relu', input_shape=(n_cols,)))

# Add the output layer
model.add(Dense(2, activation='softmax'))

# Compile the model
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])

# Fit the model
model.fit(predictors, target)

Making Predictions

In [ ]:
# Specify, compile, and fit the model
# Convert the target to categorical: target
#target = df['survived']
pred_data = np.array([[2,34.0,0,0,13.0,1,False,0,0,1] , [2,31.0,1,1,26.25,0,False,0,0,1] , [1,11.0,1,2,120.0,1,False,0,0,1] , [3,0.42,0,1,8.5167,1,False,1,0,0] , [3,27.0,0,0,6.975,1,False,0,0,1] , [3,31.0,0,0,7.775,1,False,0,0,1] , [1,39.0,0,0,0.0,1,False,0,0,1] , [3,18.0,0,0,7.775,0,False,0,0,1] , [2,39.0,0,0,13.0,1,False,0,0,1] , [1,33.0,1,0,53.1,0,False,0,0,1] , [3,26.0,0,0,7.8875,1,False,0,0,1] , [3,39.0,0,0,24.15,1,False,0,0,1] , [2,35.0,0,0,10.5,1,False,0,0,1] , [3,6.0,4,2,31.275,0,False,0,0,1] , [3,30.5,0,0,8.05,1,False,0,0,1] , [1,29.69911764705882,0,0,0.0,1,True,0,0,1] , [3,23.0,0,0,7.925,0,False,0,0,1] , [2,31.0,1,1,37.0042,1,False,1,0,0] , [3,43.0,0,0,6.45,1,False,0,0,1] , [3,10.0,3,2,27.9,1,False,0,0,1] , [1,52.0,1,1,93.5,0,False,0,0,1] , [3,27.0,0,0,8.6625,1,False,0,0,1] , [1,38.0,0,0,0.0,1,False,0,0,1] , [3,27.0,0,1,12.475,0,False,0,0,1] , [3,2.0,4,1,39.6875,1,False,0,0,1] , [3,29.69911764705882,0,0,6.95,1,True,0,1,0] , [3,29.69911764705882,0,0,56.4958,1,True,0,0,1] , [2,1.0,0,2,37.0042,1,False,1,0,0] , [3,29.69911764705882,0,0,7.75,1,True,0,1,0] , [1,62.0,0,0,80.0,0,False,0,0,0] , [3,15.0,1,0,14.4542,0,False,1,0,0] , [2,0.83,1,1,18.75,1,False,0,0,1] , [3,29.69911764705882,0,0,7.2292,1,True,1,0,0] , [3,23.0,0,0,7.8542,1,False,0,0,1] , [3,18.0,0,0,8.3,1,False,0,0,1] , [1,39.0,1,1,83.1583,0,False,1,0,0] , [3,21.0,0,0,8.6625,1,False,0,0,1] , [3,29.69911764705882,0,0,8.05,1,True,0,0,1] , [3,32.0,0,0,56.4958,1,False,0,0,1] , [1,29.69911764705882,0,0,29.7,1,True,1,0,0] , [3,20.0,0,0,7.925,1,False,0,0,1] , [2,16.0,0,0,10.5,1,False,0,0,1] , [1,30.0,0,0,31.0,0,False,1,0,0] , [3,34.5,0,0,6.4375,1,False,1,0,0] , [3,17.0,0,0,8.6625,1,False,0,0,1] , [3,42.0,0,0,7.55,1,False,0,0,1] , [3,29.69911764705882,8,2,69.55,1,True,0,0,1] , [3,35.0,0,0,7.8958,1,False,1,0,0] , [2,28.0,0,1,33.0,1,False,0,0,1] , [1,29.69911764705882,1,0,89.1042,0,True,1,0,0] , [3,4.0,4,2,31.275,1,False,0,0,1] , [3,74.0,0,0,7.775,1,False,0,0,1] , [3,9.0,1,1,15.2458,0,False,1,0,0] , [1,16.0,0,1,39.4,0,False,0,0,1] , [2,44.0,1,0,26.0,0,False,0,0,1] , [3,18.0,0,1,9.35,0,False,0,0,1] , [1,45.0,1,1,164.8667,0,False,0,0,1] , [1,51.0,0,0,26.55,1,False,0,0,1] , [3,24.0,0,3,19.2583,0,False,1,0,0] , [3,29.69911764705882,0,0,7.2292,1,True,1,0,0] , [3,41.0,2,0,14.1083,1,False,0,0,1] , [2,21.0,1,0,11.5,1,False,0,0,1] , [1,48.0,0,0,25.9292,0,False,0,0,1] , [3,29.69911764705882,8,2,69.55,0,True,0,0,1] , [2,24.0,0,0,13.0,1,False,0,0,1] , [2,42.0,0,0,13.0,0,False,0,0,1] , [2,27.0,1,0,13.8583,0,False,1,0,0] , [1,31.0,0,0,50.4958,1,False,0,0,1] , [3,29.69911764705882,0,0,9.5,1,True,0,0,1] , [3,4.0,1,1,11.1333,1,False,0,0,1] , [3,26.0,0,0,7.8958,1,False,0,0,1] , [1,47.0,1,1,52.5542,0,False,0,0,1] , [1,33.0,0,0,5.0,1,False,0,0,1] , [3,47.0,0,0,9.0,1,False,0,0,1] , [2,28.0,1,0,24.0,0,False,1,0,0] , [3,15.0,0,0,7.225,0,False,1,0,0] , [3,20.0,0,0,9.8458,1,False,0,0,1] , [3,19.0,0,0,7.8958,1,False,0,0,1] , [3,29.69911764705882,0,0,7.8958,1,True,0,0,1] , [1,56.0,0,1,83.1583,0,False,1,0,0] , [2,25.0,0,1,26.0,0,False,0,0,1] , [3,33.0,0,0,7.8958,1,False,0,0,1] , [3,22.0,0,0,10.5167,0,False,0,0,1] , [2,28.0,0,0,10.5,1,False,0,0,1] , [3,25.0,0,0,7.05,1,False,0,0,1] , [3,39.0,0,5,29.125,0,False,0,1,0] , [2,27.0,0,0,13.0,1,False,0,0,1] , [1,19.0,0,0,30.0,0,False,0,0,1] , [3,29.69911764705882,1,2,23.45,0,True,0,0,1] , [1,26.0,0,0,30.0,1,False,1,0,0] , [3,32.0,0,0,7.75,1,False,0,1,0]])
#print(type(pred_data))
predictors = df.drop(columns=['survived'], axis=1)
#target = df['wage_per_hour'].values
n_cols = predictors.shape[1]
# Convert the target to categorical: target
target = to_categorical(df.survived)
#print(target)

model = Sequential()
model.add(Dense(32, activation='relu', input_shape = (n_cols,)))
model.add(Dense(2, activation='softmax'))
model.compile(optimizer='sgd', 
              loss='categorical_crossentropy', 
              metrics=['accuracy'])
model.fit(predictors, target)

# Calculate predictions: predictions
predictions = model.predict(pred_data)

# Calculate predicted probability of survival: predicted_prob_true
predicted_prob_true = predictions[:,1]

# print predicted_prob_true
print(predicted_prob_true)

Changing optimization parameters

In [ ]:
def get_new_model():
    model = Sequential()
    model.add(Dense(100, activation='relu', input_shape = (n_cols,)))
    model.add(Dense(100, activation='relu'))
    model.add(Dense(2, activation='softmax'))
    return(model)
In [ ]:
# Import the SGD optimizer
from keras.optimizers import SGD

# Create list of learning rates: lr_to_test
lr_to_test = [.000001, 0.01, 1]

# Loop over learning rates
for lr in lr_to_test:
    print('nnTesting model with learning rate: %fn'%lr )
    
    # Build new model to test, unaffected by previous models
    model = get_new_model()
    
    # Create SGD optimizer with specified learning rate: my_optimizer
    my_optimizer = SGD(lr=lr)
    
    # Compile the model
    model.compile(optimizer=my_optimizer, loss='categorical_crossentropy')
    
    # Fit the model
    model.fit(predictors, target)
    

Model validation

In [ ]:
# Save the number of columns in predictors: n_cols
n_cols = predictors.shape[1]
input_shape = (n_cols,)

# Specify the model
model = Sequential()
model.add(Dense(100, activation='relu', input_shape = input_shape))
model.add(Dense(100, activation='relu'))
model.add(Dense(2, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Fit the model
hist = model.fit(predictors, target, validation_split=.3)

Early stopping: Optimizing the optimization

In [ ]:
# Import EarlyStopping
from keras.callbacks import EarlyStopping

# Save the number of columns in predictors: n_cols
n_cols = predictors.shape[1]
input_shape = (n_cols,)

# Specify the model
model = Sequential()
model.add(Dense(100, activation='relu', input_shape = input_shape))
model.add(Dense(100, activation='relu'))
model.add(Dense(2, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Define early_stopping_monitor
early_stopping_monitor = EarlyStopping(patience=2)

# Fit the model
model.fit(predictors, target, epochs=30, validation_split=.3, callbacks=[early_stopping_monitor])

Experimenting with wider networks

In [ ]:
# Define early_stopping_monitor
early_stopping_monitor = EarlyStopping(patience=2)

# Save the number of columns in predictors: n_cols
n_cols = predictors.shape[1]
input_shape = (n_cols,)

# Specify the model
model_1 = Sequential()
model_1.add(Dense(100, activation='relu', input_shape = input_shape))
model_1.add(Dense(100, activation='relu'))
model_1.add(Dense(2, activation='softmax'))

# Compile the model
model_1.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_1.fit(predictors, target, epochs=30, validation_split=.3, callbacks=[early_stopping_monitor])
# Create the new model: model_2
model_2 = Sequential()

# Add the first and second layers
model_2.add(Dense(100, activation='relu', input_shape=input_shape))
model_2.add(Dense(100, activation='relu', input_shape=input_shape))

# Add the output layer
model_2.add(Dense(2, activation='softmax'))

# Compile model_2
model_2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Fit model_1
model_1_training = model_1.fit(predictors, target, epochs=15, validation_split=0.2, callbacks=[early_stopping_monitor], verbose=False)

# Fit model_2
model_2_training = model_2.fit(predictors, target, epochs=15, validation_split=0.2, callbacks=[early_stopping_monitor], verbose=False)

# Create the plot
plt.plot(model_1_training.history['val_loss'], 'r', model_2_training.history['val_loss'], 'b')
plt.xlabel('Epochs')
plt.ylabel('Validation score')
plt.show()

Adding layers to a network

In [ ]:
# The input shape to use in the first hidden layer
input_shape = (n_cols,)

# Create the new model: model_2
model_2 = Sequential()

# Add the first, second, and third hidden layers
model_2.add(Dense(50, activation='relu', input_shape=input_shape))
model_2.add(Dense(50, activation='relu'))
model_2.add(Dense(50, activation='relu'))

# Add the output layer
model_2.add(Dense(2, activation='softmax'))

# Compile model_2
model_2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Fit model 1
model_1_training = model_1.fit(predictors, target, epochs=20, validation_split=0.4, callbacks=[early_stopping_monitor], verbose=False)

# Fit model 2
model_2_training = model_2.fit(predictors, target, epochs=20, validation_split=0.4, callbacks=[early_stopping_monitor], verbose=False)

# Create the plot
plt.plot(model_1_training.history['val_loss'], 'r', model_2_training.history['val_loss'], 'b')
plt.xlabel('Epochs')
plt.ylabel('Validation score')
plt.show()

The model with the lower loss value is the better model

Building your own digit recognition model

In [ ]:
# Import necessary modules
import pandas as pd
import keras
from keras.layers import Dense
from keras.models import Sequential
from keras.utils import to_categorical


df = pd.read_csv('../input/mnist-data/mnist.csv')
print(df.head())
X = df.drop(df.columns[0], axis=1).values
# Convert the target to categorical: target
y = to_categorical(df.iloc[:,0].values)
print(X.shape)
print(y.shape)

#n_cols = predictors.shape[1]


#target = to_categorical(df.survived)

# Create the model: model
model = Sequential()

# Add the first hidden layer
model.add(Dense(50, activation='relu', input_shape=(X[0].shape[0],)))

# Add the second hidden layer
model.add(Dense(50, activation='relu'))

# Add the output layer
model.add(Dense(10, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Fit the model
model.fit(X, y, validation_split=.3)

You should see better than 90% accuracy recognizing handwritten digits, even while using a small training set of only 1750 images!