- Create and activate the conda environment:
conda create -n test python=3.11 -y
conda activate test
- Install Jupyter in the
test
environment:conda install jupyter
- Install the ipykernel package:
conda install ipykernel
- Add the
test
environment to Jupyter:python -m ipykernel install --user --name=test --display-name "Test Environment"
- Start Jupyter:
jupyter notebook
Python
Identify Error causing file
import tracemalloc
import logging
import warnings
import sys
import traceback
# Enable Tracemalloc
tracemalloc.start()
# Configure Logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(lineno)d - %(message)s')
# Function to Log Warnings with Traceback
def warn_with_traceback(message, category, filename, lineno, file=None, line=None):
log = file if hasattr(file, 'write') else sys.stderr
traceback.print_stack(file=log)
log.write(warnings.formatwarning(message, category, filename, lineno, line))
# Override showwarning
warnings.showwarning = warn_with_traceback
Python Package
Poetry
poetry new .
extendedjson
├───extendedjson
│ └───__init__.py
├───tests
│ ├───__init__.py
│ └───test_extendedjson.py
├───pyproject.toml
└───README.rst
[tool.poetry]
name = "extendedjson"
version = "0.1.0"
description = ""
authors = ["Praison"]
[tool.poetry.dependencies]
python = "^3.8"
[tool.poetry.dev-dependencies]
pytest = "^5.2"
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
poetry install
Repositories
git init
git add *
git commit -m "First commit"
git branch -M main
git remote add origin https://github.com/test/extendedjson.git
git push -u origin main
Pre commit hooks
poetry add -D pre-commit
git add poetry.lock pyproject.toml
git commit -m "Add pre-commit dependency."
.pre-commit-config.yaml
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.0.1
hooks:
- id: check-toml
- id: check-yaml
- id: end-of-file-fixer
- id: mixed-line-ending
- repo: https://github.com/psf/black
rev: 22.3.0
hooks:
- id: black
- repo: https://github.com/PyCQA/isort
rev: 5.10.1
hooks:
- id: isort
args: ["--profile", "black"]
pre-commit install
pre-commit run all-files
git add pyproject.toml poetry.lock .pre-commit-config.yaml
git commit -m "Add pre-commit dependency."
git add *
git commit -m "Run all pre-commits."
git push
Test Repository
poetry config repositories.testpypi https://test.pypi.org/legacy/
poetry config http-basic.testpypi __token__ pypi-your-api-token-here
poetry build
poetry publish -r testpypi
Publish
poetry config pypi-token.pypi pypi-your-token-here
poetry publish --build
Writing Tests
tests/test_extendedjson.py
from extendedjson import __version__
def test_version():
assert __version__ == "0.1.0"
λ pytest
========================= test session starts =========================
platform win32 -- Python 3.8.5, pytest-5.4.3, py-1.11.0, pluggy-0.13.1
rootdir: C:\Users\rodri\Documents\Programming\extendedjson
collected 5 items
tests\test_extendedjson.py ..... [100%]
========================== 5 passed in 0.06s ==========================
Python Change Version
update-alternatives --install /usr/bin/python3 python3 /usr/local/bin/python3.9 1
update-alternatives --install /usr/bin/python3 python3 /usr/local/bin/python3.8 2
Praison Python Package
Python VSCode launch.json
{
"version": "0.2.0",
"configurations": [
{
"name": "Python: Current File (Integrated Terminal)",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal"
},
{
"name": "Python: Remote Attach",
"type": "python",
"request": "attach",
"port": 5678,
"host": "localhost",
"pathMappings": [
{
"localRoot": "${workspaceFolder}",
"remoteRoot": "."
}
]
},
{
"name": "Python: Module",
"type": "python",
"request": "launch",
"module": "enter-your-module-name-here",
"console": "integratedTerminal"
},
{
"name": "Python: Django",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/manage.py",
"console": "integratedTerminal",
"args": [
"runserver",
"--noreload",
"--nothreading"
],
"django": true
},
{
"name": "Python: Flask",
"type": "python",
"request": "launch",
"module": "flask",
"env": {
"FLASK_APP": "app.py"
},
"args": [
"run",
"--no-debugger",
"--no-reload"
],
"jinja": true
},
{
"name": "Python: Current File (External Terminal)",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "externalTerminal"
}
]
}
Python Q&A
Certainly! Here are the answers to the Python practical interview questions:
- What is Python? Explain its key features.
Answer: Python is a high-level, interpreted programming language known for its simplicity and readability. Its key features include easy-to-use syntax, dynamic typing, automatic memory management, and extensive standard libraries. - How do you handle exceptions in Python? Provide an example.
Answer: Exceptions in Python are handled using the try-except block. Here’s an example:
try:
# Code that might raise an exception
result = 10 / 0
except ZeroDivisionError:
print("Error: Division by zero!")
- Explain the difference between lists and tuples in Python.
Answer: Lists and tuples are both used to store multiple items in Python. The main difference is that lists are mutable (can be modified), while tuples are immutable (cannot be modified after creation). - How do you read a file in Python? Provide an example.
Answer: To read a file in Python, you can use theopen()
function. Here’s an example:
with open("file.txt", "r") as file:
content = file.read()
print(content)
- Write a Python function to calculate the factorial of a number.
Answer:
def factorial(n):
if n == 0 or n == 1:
return 1
else:
return n * factorial(n - 1)
- How do you create a virtual environment in Python?
Answer: To create a virtual environment in Python, you can use thevenv
module. Here’s how:
python3 -m venv myenv
- Explain the concept of generator functions in Python.
Answer: Generator functions in Python are used to create iterators. They use theyield
keyword to pause the function’s execution and return a value, allowing the caller to iterate over the results one at a time. - How do you perform unit testing in Python? Provide an example using a testing framework.
Answer: Python has several testing frameworks, such asunittest
andpytest
. Here’s an example usingunittest
:
import unittest
def add(a, b):
return a + b
class TestAddFunction(unittest.TestCase):
def test_add(self):
self.assertEqual(add(2, 3), 5)
self.assertEqual(add(-1, 1), 0)
if __name__ == '__main__':
unittest.main()
- Write a Python class that represents a rectangle and has methods to calculate its area and perimeter.
Answer:
class Rectangle:
def __init__(self, length, width):
self.length = length
self.width = width
def calculate_area(self):
return self.length * self.width
def calculate_perimeter(self):
return 2 * (self.length + self.width)
- Explain the difference between shallow copy and deep copy in Python.
Answer: Shallow copy creates a new object but references the same items as the original object, while deep copy creates a new object with new copies of all the items recursively. - How do you handle command line arguments in a Python script? Provide an example.
Answer: Command line arguments can be accessed using thesys
module or theargparse
module. Here’s an example usingargparse
:
“`python
import argparse parser = argparse.ArgumentParser()
parser.add_argument(“–name”, help=”Your name
“, required=True)
args = parser.parse_args()
print("Hello, " + args.name)
```
- Write a Python function to reverse a string without using any built-in functions.
Answer:def reverse_string(input_str): return input_str[::-1]
- What is a decorator in Python? Provide an example of how to use a decorator.
Answer: A decorator in Python is a design pattern that allows adding functionality to an existing function or class. Here’s an example of a decorator:def uppercase_decorator(func): def wrapper(*args, **kwargs): result = func(*args, **kwargs) return result.upper() return wrapper @uppercase_decorator def say_hello(): return "hello" print(say_hello()) # Output: HELLO
- How do you sort a list of dictionaries based on a specific key in Python?
Answer:data = [ {"name": "Alice", "age": 25}, {"name": "Bob", "age": 30}, {"name": "Charlie", "age": 20} ] sorted_data = sorted(data, key=lambda x: x['age']) print(sorted_data)
- Explain the concept of lambda functions in Python. Provide an example.
Answer: Lambda functions are anonymous functions defined using thelambda
keyword. They are typically used for short, one-line functions. Here’s an example:square = lambda x: x ** 2 print(square(5)) # Output: 25
- Write a Python program to find the second largest number in a list.
Answer:def find_second_largest(numbers): sorted_numbers = sorted(numbers) return sorted_numbers[-2] numbers = [5, 2, 8, 10, 3] print(find_second_largest(numbers)) # Output: 8
- How do you handle multi-threading in Python? Provide an example.
Answer: Multi-threading in Python can be achieved using thethreading
module. Here’s an example:import threading def print_numbers(): for i in range(1, 6): print(i) def print_letters(): for letter in "ABCDE": print(letter) t1 = threading.Thread(target=print_numbers) t2 = threading.Thread(target=print_letters) t1.start() t2.start() t1.join() t2.join()
- Explain the concept of context managers in Python. Provide an example of using a context manager.
Answer: Context managers in Python are used to manage resources by defining setup and teardown actions. Thewith
statement is used to create a context manager. Here’s an example:class FileManager: def __init__(self, filename): self.filename = filenamedef __enter__(self): self.file = open(self.filename, "r") return self.file def __exit__(self, exc_type, exc_val, exc_tb): self.file.close()with FileManager("file.txt") as file: content = file.read() print(content)
- Write a Python program to count the frequency of words in a text file.
Answer:
“`python
def count_word_frequency(filename):
word_freq = {}
with open(filename, “r”) as file:
for line in file:
words = line
.split()
for word in words:
word_freq[word] = word_freq.get(word, 0) + 1
return word_freq
result = count_word_frequency("file.txt")
print(result)
```
- How do you connect to a database and perform CRUD operations using Python? Provide an example using a popular database library.
Answer: You can connect to a database and perform CRUD operations using libraries likepsycopg2
for PostgreSQL orpymysql
for MySQL. Here’s an example usingpsycopg2
:import psycopg2 conn = psycopg2.connect( host="localhost", database="mydatabase", user="myuser", password="mypassword" ) cursor = conn.cursor() # Perform CRUD operations using cursor conn.commit() cursor.close() conn.close()
Please note that the answers provided are meant to serve as a reference, and there may be multiple ways to approach each question.
Certainly! Here are 20 more Python interview questions along with their answers:
- What are Python decorators used for? Provide an example.
Answer: Python decorators are used to modify the behavior of functions or classes. They allow you to wrap a function or class with additional functionality. Here’s an example:
def uppercase_decorator(func):
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
return result.upper()
return wrapper
@uppercase_decorator
def say_hello():
return "hello"
print(say_hello()) # Output: HELLO
- How do you handle file I/O errors in Python? Provide an example.
Answer: File I/O errors in Python can be handled using try-except blocks. Here’s an example:
try:
file = open("myfile.txt", "r")
content = file.read()
file.close()
except IOError:
print("An error occurred while reading the file.")
- Explain the difference between a shallow copy and a deep copy of an object.
Answer: A shallow copy creates a new object that references the original object’s memory. A deep copy, on the other hand, creates a completely independent copy of the object, including all nested objects. - What is the purpose of the
__init__
method in a Python class?
Answer: The__init__
method is a special method in Python classes. It is automatically called when a new instance of the class is created. It is commonly used to initialize the attributes of the object. - How do you remove duplicate elements from a list in Python?
Answer: You can remove duplicate elements from a list by converting it to a set and then back to a list. Here’s an example:
my_list = [1, 2, 3, 3, 4, 4, 5]
unique_list = list(set(my_list))
print(unique_list) # Output: [1, 2, 3, 4, 5]
- What is the difference between a list and a dictionary in Python?
Answer: A list is an ordered collection of elements, whereas a dictionary is an unordered collection of key-value pairs. Lists are accessed by their index, while dictionaries are accessed by their keys. - How do you handle data serialization in Python? Provide an example using the
pickle
module.
Answer: Data serialization in Python can be achieved using modules likepickle
. Here’s an example:
import pickle
data = {"name": "John", "age": 30}
# Serialize the data
serialized_data = pickle.dumps(data)
# Deserialize the data
deserialized_data = pickle.loads(serialized_data)
print(deserialized_data) # Output: {"name": "John", "age": 30}
- How do you iterate over a dictionary in Python?
Answer: You can iterate over a dictionary using afor
loop. By default, it iterates over the keys of the dictionary. Here’s an example:
my_dict = {"name": "John", "age": 30}
for key in my_dict:
value = my_dict[key]
print(key, value)
- Explain the Global Interpreter Lock (GIL) in Python.
Answer: The Global Interpreter Lock (GIL) is a mechanism used in CPython (the reference implementation of Python) to ensure that only one thread executes Python bytecode at a time. It is used to simplify memory management in Python. - How do you sort a list of objects based on a specific attribute in Python?
Answer: You can use thekey
parameter of thesort
method or thesorted
function to specify a custom attribute for sorting. Here’s an example:class Person: def __init__(self, name, age): self.name = name self.age = age people = [ Person("John", 25), Person("Alice", 30), Person("Bob", 20) ] sorted_people = sorted(people, key=lambda x: x.age) for person in sorted_people: print(person.name, person.age)
- How do you check if a key exists in a dictionary in Python?
Answer: You can use thein
keyword to check if a key exists in a dictionary. Here’s an example:my_dict = {"name": "John", "age": 30} if "name" in my_dict: print("Key 'name' exists!")
- How do you convert a string to a list of characters in Python?
Answer: You can convert a string to a list of characters using list comprehension. Here’s an example:my_string = "Hello" char_list = [char for char in my_string] print(char_list) # Output: ['H', 'e', 'l', 'l', 'o']
- What is the purpose of the
__name__
variable in Python?
Answer: The__name__
variable is a built-in variable in Python that represents the name of the current module. When a module is run directly,__name__
is set to"__main__"
. It is often used to include code that should only run when the module is executed as a standalone script. - How do you reverse a list in Python?
Answer: You can reverse a list using thereverse
method or the slicing technique. Here are examples of both methods:my_list = [1, 2, 3, 4, 5] # Method 1: Using the reverse method my_list.reverse() print(my_list) # Output: [5, 4, 3, 2, 1] # Method 2: Using slicing reversed_list = my_list[::-1] print(reversed_list) # Output: [5, 4, 3, 2, 1]
- How do you format strings in Python?
Answer: You can format strings in Python using the%
operator, thestr.format()
method, or f-strings (formatted string literals). Here’s an example using f-strings:name = "John" age = 30 message = f"My name is {name} and I am {age} years old." print(message) # Output: "My name is John and I am 30 years old."
- What is the purpose of the
pass
statement in Python?
Answer: Thepass
statement is a placeholder statement in Python that does nothing. It is used when a statement is required syntactically but no action is needed. - How do you convert a list of strings to a single string in Python?
Answer: You can use thejoin
method to concatenate a list of strings into a single string. Here’s an example: “`python
my_list = [“Hello
“, “World”]
single_string = ” “.join(my_list)
print(single_string) # Output: “Hello World”
“`
- Explain the difference between shallow copy and deep copy in Python.
Answer: A shallow copy creates a new object that references the original object’s memory. Changes made to the original object will be reflected in the copied object. A deep copy, on the other hand, creates a completely independent copy of the object, including all nested objects. - How do you handle command line arguments in a Python script? Provide an example.
Answer: Command line arguments can be accessed using thesys.argv
list or theargparse
module. Here’s an example usingargparse
:import argparse parser = argparse.ArgumentParser() parser.add_argument("--name", help="Your name", required=True) args = parser.parse_args() print("Hello, " + args.name)
- How do you convert a string to lowercase or uppercase in Python?
Answer: You can convert a string to lowercase or uppercase using thelower
orupper
methods, respectively. Here’s an example:my_string = "Hello World" lowercase_string = my_string.lower() print(lowercase_string) # Output: "hello world" uppercase_string = my_string.upper() print(uppercase_string) # Output: "HELLO WORLD"
These additional questions cover various aspects of Python programming and can help assess a candidate’s proficiency in the language. Remember to tailor the questions to the specific requirements of your interview.
Datatypes manipulation in Python
# Numeric Types
integer_num = 10
float_num = 3.14
# String
my_string = "Hello, World!"
upper_string = my_string.upper()
lower_string = my_string.lower()
replaced_string = my_string.replace("Hello", "Hi")
# Boolean
is_true = True
is_false = False
# List
my_list = [1, 2, 3, 4, 5]
my_list.append(6)
my_list.extend([7, 8])
my_list.remove(3)
popped_element = my_list.pop(0)
list_length = len(my_list)
my_list.sort()
my_list.reverse()
# Tuple
my_tuple = (1, 2, 3, 4, 5)
element = my_tuple[2]
# Dictionary
my_dict = {"name": "Alice", "age": 25}
my_dict["city"] = "New York"
dict_keys = my_dict.keys()
# Set
my_set = {1, 2, 3, 4, 5}
my_set.add(6)
my_set.update([7, 8])
my_set.remove(3)
set_length = len(my_set)
# None
my_variable = None
# Printing Results
print(integer_num)
print(float_num)
print(my_string)
print(upper_string)
print(lower_string)
print(replaced_string)
print(is_true)
print(is_false)
print(my_list)
print(popped_element)
print(list_length)
print(my_tuple)
print(element)
print(my_dict)
print(dict_keys)
print(my_set)
print(set_length)
print(my_variable)
List manipulation in Python
# Adding Elements
my_list = [1, 2, 3]
my_list.append(4) # [1, 2, 3, 4]
my_list.extend([5, 6, 7]) # [1, 2, 3, 4, 5, 6, 7]
my_list.insert(2, 8) # [1, 2, 8, 3, 4, 5, 6, 7]
# Removing Elements
my_list.remove(3) # [1, 2, 8, 4, 5, 6, 7]
popped = my_list.pop(0) # popped = 1, my_list = [2, 8, 4, 5, 6, 7]
my_list.clear() # []
# Updating Elements
my_list = [1, 2, 3, 4, 5]
my_list[2] = 8 # [1, 2, 8, 4, 5]
my_list[1:4] = [6, 7, 9] # [1, 6, 7, 9, 5]
# Sorting
my_list.sort() # [1, 5, 6, 7, 9]
sorted_list = sorted(my_list) # sorted_list = [1, 5, 6, 7, 9], my_list remains unchanged
# Reversing
my_list.reverse() # [9, 7, 6, 5, 1]
# Counting and Indexing
count = my_list.count(5) # count = 1
index = my_list.index(6) # index = 2
# List Comprehensions
squares = [x**2 for x in my_list] # squares = [81, 49, 36, 25, 1]
# Other Operations
length = len(my_list) # length = 5
is_present = 5 in my_list # is_present = True
copy = my_list.copy() # creates a shallow copy of the list
# Printing Results
print(my_list)
print(popped)
print(sorted_list)
print(count)
print(index)
print(squares)
print(length)
print(is_present)
print(copy)
Python Cheatsheet
- Variables
- Data Types
- Operators
- Conditional Statements
- Loops
- Functions
- Modules
- Classes
- Objects
- Inheritance
- Polymorphism
- Exception Handling
- File Handling
- Input/Output
- List Comprehensions
- Generators
- Decorators
- Recursion
- Regular Expressions
- Error Handling
- Threading and Concurrency
- Packaging and Distribution
- Virtual Environments
- Functional Programming
- Object-Oriented Programming (OOP) Principles
# Variables: Used to store and manipulate data.
message = "Hello, World!"
# Data Types: Includes integers, floats, strings, booleans, lists, tuples, dictionaries, etc.
number = 42
pi = 3.14
is_valid = True
my_list = [1, 2, 3]
my_tuple = (4, 5, 6)
my_dict = {'name': 'John', 'age': 25}
# Operators: Perform arithmetic, logical, and comparison operations.
result = number + pi
is_equal = (number == pi)
# Conditional Statements: If, else, and elif statements for decision-making.
if is_valid:
print("Valid")
elif number > 50:
print("Greater than 50")
else:
print("Invalid")
# Loops: For and while loops for iterative execution.
for item in my_list:
print(item)
while number > 0:
print(number)
number -= 1
# Functions: Blocks of reusable code that perform specific tasks.
def greet(name):
print("Hello, " + name)
greet("Alice")
# Modules: Encapsulate related functions, classes, and variables for code organization and reusability.
import math
# Classes: Blueprint for creating objects with attributes and methods.
class Rectangle:
def __init__(self, width, height):
self.width = width
self.height = height
def area(self):
return self.width * self.height
rect = Rectangle(5, 3)
print(rect.area())
# Objects: Instances of classes that encapsulate data and behavior.
# Inheritance: Allows creating new classes based on existing classes to inherit their attributes and methods.
class Square(Rectangle):
def __init__(self, side_length):
super().__init__(side_length, side_length)
square = Square(4)
print(square.area())
# Polymorphism: Ability of objects of different classes to respond to the same method call.
def print_area(shape):
print("Area:", shape.area())
print_area(rect)
print_area(square)
# Exception Handling: Catches and handles runtime errors and exceptions.
try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero")
# File Handling: Reading from and writing to files.
with open("data.txt", "w") as file:
file.write("Hello, File!")
with open("data.txt", "r") as file:
content = file.read()
print(content)
# Input/Output: Interaction with the user through standard input/output streams.
name = input("Enter your name: ")
print("Hello,", name)
# List Comprehensions: Concise way to create lists based on existing lists.
squares = [x**2 for x in range(1, 6)]
print(squares)
# Generators: Functions that can be paused and resumed, yielding values instead of returning them all at once.
def fibonacci():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
fib = fibonacci()
print(next(fib))
print(next(fib))
print(next(fib))
# Decorators: Functions that wrap other functions to modify their behavior.
def uppercase_decorator(func):
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
return result.upper()
return wrapper
@uppercase_decorator
def greet(name):
return "Hello, " + name
print(greet("Alice"))
# Recursion: A function calling itself to solve a problem by breaking it down into smaller instances.
def factorial(n):
if n == 0 or n == 1:
return 1
else:
return n * factorial(n - 1)
print(factorial(5))
# Regular Expressions: Patterns used for matching and manipulating strings.
import re
pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b'
email = 'example@example.com'
if re.match(pattern, email):
print("Valid email")
else:
print("Invalid email")
# Error Handling: Handling and managing errors using try-except blocks.
try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero")
except Exception as e:
print("An error occurred:", str(e))
# Threading and Concurrency: Creating and managing multiple threads of execution.
import threading
def print_numbers():
for i in range(1, 6):
print(i)
def print_letters():
for letter in 'ABCDE':
print(letter)
t1 = threading.Thread(target=print_numbers)
t2 = threading.Thread(target=print_letters)
t1.start()
t2.start()
Higher-order functions, lambda expressions, immutable data, encapsulation, and polymorphism:
# Utilizing higher-order functions and lambda expressions
def apply_operation(operation, x, y):
return operation(x, y)
addition = lambda a, b: a + b
result = apply_operation(addition, 4, 5)
print(result)
# Immutable data
immutable_list = (1, 2, 3)
# Trying to modify immutable data will raise an error
# immutable_list[0] = 10
# Encapsulation and polymorphism
class Animal:
def __init__(self, name):
self.name = name
def sound(self):
pass
class Dog(Animal):
def sound(self):
return "Woof!"
class Cat(Animal):
def sound(self):
return "Meow!"
animals = [Dog("Buddy"), Cat("Whiskers")]
for animal in animals:
print(animal.name + " says " + animal.sound())
# Bundling Python code and dependencies for distribution
# You can use tools like setuptools or PyInstaller to bundle your code into distributable packages.
# Virtual Environments: Isolated Python environments for managing dependencies
# You can create a virtual environment to isolate your project's dependencies.
# These concepts have been included in the updated code. Higher-order functions and lambda expressions are demonstrated in the `apply_operation` function. Immutable data is exemplified with the `immutable_list` tuple. Encapsulation and polymorphism are illustrated through the `Animal`, `Dog`, and `Cat` classes.
# Note: The code snippets are for illustration purposes only and may require additional imports or modifications to run independently.
Now, the program incorporates higher-order functions, lambda expressions, immutable data, encapsulation, and polymorphism.
Differences between lists and tuples
Lists | Tuples | |
---|---|---|
Mutability | Mutable – Elements can be added, removed, or modified | Immutable – Once created, elements cannot be modified |
Syntax | Enclosed in square brackets [] | Enclosed in parentheses (), optional in some cases |
Example | my_list = [1, 2, 3] | my_tuple = (1, 2, 3) |
Usage | Suitable for dynamic modifications of order and content | Suitable for ensuring data remains unchanged |
Commonly used for collections that may change over time | Commonly used for fixed collections of related values | |
Performance | Requires more memory and slower for certain operations | More memory-efficient and faster for accessing elements |
# Lists - Mutable
my_list = [1, 2, 3] # Create a list
my_list.append(4) # Modify: Add an element
my_list[0] = 10 # Modify: Change an element
del my_list[1] # Modify: Remove an element
print(my_list) # Output: [10, 3, 4]
# Tuples - Immutable
my_tuple = (1, 2, 3) # Create a tuple
# my_tuple.append(4) # Error: Tuples are immutable, cannot add element
# my_tuple[0] = 10 # Error: Tuples are immutable, cannot change element
# del my_tuple[1] # Error: Tuples are immutable, cannot remove element
print(my_tuple) # Output: (1, 2, 3)
# Usage Examples
shopping_list = ["apples", "bananas", "oranges"] # List example
coordinates = (10, 20) # Tuple example
In this code block, the first section demonstrates the mutability of lists by adding, modifying, and removing elements. The second section shows the immutability of tuples and the resulting errors when attempting to modify them. Finally, there are usage examples illustrating lists for a shopping list and tuples for coordinates.